算法竞赛入门经典 第三章习题题解(二)

写在前面

第9篇博客,一共12道题,分成2篇来写.

6. Uva 232 - Crossword Answers

11:56开始
12:03写题意
给出r(10)行c(10)列的网格,里面有若干个’*’和大写字母.一个字母格被定义为合格的要求是左边或上边是’*’或者边缘.按从上到下从左到右的顺序给合格的格排序,然后分横竖输出所有词:合格的格横或竖连续走尽量多的字母格,是一个词.
读入后,找出合格的格,编号,遍历即可,模拟题.
15:18醒来,写代码.
16:10 AC

#include <bits/stdc++.h>
using namespace std;
char s[12][12];
struct item
{
    int i;
    int j;
    int idx;
};
int main(void)
{
    int n,m,kase=1;
    while(scanf("%d",&n),n)
    {
        scanf("%d",&m);
        vector<item> si,sj;
        int idx=1;
        if(kase!=1)
            printf("\n");
        for(int i=0;i<n;i++)
        {
            scanf("%s",s[i]);
            for(int j=0;j<m;j++)
            {
                int flag=0;
                if(isalpha(s[i][j])&&(i-1<0||s[i-1][j]=='*'))
                {
                    si.push_back({i,j,idx});
                    flag=1;
                }
                if(isalpha(s[i][j])&&(j-1<0||s[i][j-1]=='*'))
                {
                    sj.push_back({i,j,idx});
                    flag=1;
                }
                if(flag)
                    idx++;
            }
        }
        printf("puzzle #%d:\n",kase++ );
        printf("Across\n");
        for(item x:sj)
        {
            printf("%3d.",x.idx);
            int tj=x.j;
            while(tj<m&&s[x.i][tj]!='*')
                printf("%c",s[x.i][tj++]);
            printf("\n");
        }
        printf("Down\n");
        for(item x:si)
        {
            printf("%3d.",x.idx);
            int ti=x.i;
            while(ti<n&&s[ti][x.j]!='*')
                printf("%c",s[ti++][x.j]);
            printf("\n");
        }
    }
    return 0;
}

提交了7次,有5个格式错误和1个逻辑错误……横纵坐标要对应啊!

7. uva 1368 - DNA Consensus String

给出n(1000)个长度为m的DNA串,求一个串到这些串的编辑距离和最小,并输出这个距离.

按每个字符遍历即可.

#include <bits/stdc++.h>
int save[1010][4];
int main(void)
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        memset(save,0,sizeof(save));
        int n,m;
        scanf("%d%d",&n,&m);
        getchar();
        for(int i=0;i<n;i++)
        {
            int t=0;
            char c;
            while((c=getchar())!='\n')
            {
                int p=0;
                switch(c)
                {
                    case 'A':p=0;break;
                    case 'C':p=1;break;
                    case 'G':p=2;break;
                    case 'T':p=3;break;
                }
                save[t++][p]++;
            }
        }
        int ans=0;
        for(int i=0;i<m;i++)
        {
            int mx=save[i][0],p=0;
            for(int j=1;j<4;j++)
                if(mx<save[i][j])
                    mx=save[i][j],p=j;
            ans+=n-mx;
            char c='\0';
            switch(p)
            {
                case 0:c='A';break;
                case 1:c='C';break;
                case 2:c='G';break;
                case 3:c='T';break;
            }
            printf("%c",c );
        }
        printf("\n%d\n",ans);
    }
    return 0;
}

AC时间:25分钟.
需要一种一一映射的结构.

8. uva 202 - Repeating Decimals 模拟,基础数学

输入整数a和b,求a/b的无限循环小数表示形式及循环节长度.(a,b<=3000)
若循环50位以上,输出…以表示.
若可以除尽,视为以0为循环节.
举例
1/397 = 0.(00251889168765743073047858942065491183879093198992…)
99 = number of digits in repeating cycle

整数部分a/b即可得到.
a%=b后有a<b,此时模拟竖式除法,开两个数组记录余数和每一位的商.
如果有两个相同的余数,即为一个循环.循环节就是商数组在那一段的内容.
由一个数学定理,n的倒数若为无限循环小数,循环节长度不会超过n-1,所以3000次以内必有结果.

代码中,fl存储小数点后的部分,下标在1-st存储不循环部分,st-cnt存储循环部分.
save实际为一个hash数组,同时值表示下标.
注意模拟除法时补0的情况(乘10后不能除则存入0,能除则存入商)(第21行)

#include <bits/stdc++.h>
int fl[3010], save[3010]; 
int main(void)
{
    int a, b;
    while(scanf("%d %d", &a, &b) != EOF)
    {
        printf("%d/%d = %d.", a, b, a / b );
        memset(fl, 0, sizeof(fl)), memset(save, 0, sizeof(save));
        int st, cnt = 1;
        while(1)
        {
            a %= b;
            if(save[a])
            {
                st = save[a];
                break;
            }
            save[a] = cnt;
            a *= 10;
            fl[cnt++] = (a >= b) ? (a / b) : 0;
        }

        for(int i = 1; i < st; i++)
            printf("%d", fl[i] );
        printf("(" );
        for(int i = st; i < cnt; i++)
        {
            if(i == 51)
            {
                printf("...");
                break;
            }
            printf("%d", fl[i] );
        }
        printf(")\n   %d = number of digits in repeating cycle\n\n", cnt - st );
    }
    return 0;
}

9. Uva 10340 - All in All 字符串

给定两个串s和t,询问s是否是t的子序列(可以不连续,字串需要连续).

子序列模板题,尽量往前匹配就好.简单的双指针扫描

#include <bits/stdc++.h>
char s[200000],t[200000];
int main(void)
{
    while(scanf("%s %s",s,t)!=EOF)
    {
        int ls=strlen(s),lt=strlen(t);
        int j=0;
        for(int i=0;i<lt;i++)
        {
            if(t[i]==s[j])
                j++;
        }
        if(j==ls)
            printf("Yes\n");
        else
            printf("No\n");
    }
    return 0;
}

10. Uva 1587 Box 模拟

给出6个矩形的相邻两边长,判断他们能否构成一个长方体.
很巧妙的一道题,题意简单但是很难判断.
小白书的进度到这里时,似乎只会数组和循环分支结构.
网上有一种方法是按长宽排序,然后判断是否两两一组.

很惭愧,我用了stl,还找了半天bug.
我的方法是先离散化,再把每个矩形的边按 宽-长 顺序排列,
然后把矩形存入map< <pair<int,int>,int >里.
一共只有三种情况能构成长方体:
mp[ {1, 1}] == 6;
mp[ {1, 1}] == 2 && mp[ {1, 2}] == 4;
mp[ {1, 2}] == 2 && mp[ {1, 3}] == 2 && mp[ {2, 3}] == 2;
以上其实是有bug的,大家可以想想为什么,代码里没有bug.

#include <bits/stdc++.h>
using namespace std;
int a[12], b[12];
//离散化,传入原数组,存放数组,长度.
template <class Typename> void discre(Typename *src, Typename *des, int n)
{
    map<int, int> mp_discre;
    memcpy(des, src, n * sizeof(src[0]));
    sort(des, des + n);
    int num = unique(des, des + n) - des;
    for(int i = 0; i < num; i++)
        mp_discre[des[i]] = i + 1;
    for(int i = 0; i < n; i++)
        des[i] = mp_discre[src[i]];
}
map<pair<int, int>, int> mp;
int main(void)
{
    while(scanf("%d", &a[0]) != EOF)
    {
        mp.clear();
        memset(b, 0, sizeof(b));
        for(int i = 1; i < 12; i++)
            scanf("%d", &a[i]);
        discre(a, b, 12);
        for(int i = 0; i < 6; i++)
        {
            if(b[i * 2] > b[i * 2 + 1])
                mp[ {b[i * 2 + 1], b[i * 2 ]}]++;
            else
                mp[ {b[i * 2], b[i * 2 + 1 ]}]++;
        }
        if(mp[ {1, 1}] == 6)
            printf("POSSIBLE\n");
        else if(mp[ {1, 1}] + mp[ {2, 2}] == 2 && mp[ {1, 2}] == 4)
            printf("POSSIBLE\n");
        else if(mp[ {1, 2}] == 2 && mp[ {1, 3}] == 2 && mp[ {2, 3}] == 2)
            printf("POSSIBLE\n");
        else
            printf("IMPOSSIBLE\n");
    }
    return 0;
}

学习了unique函数的用法,改进了离散化模板.

11. Uva 1588 - Kickdown 字符串匹配

给定长度分别为n1,n2(100)的宽度为1的木条,木条同一侧上有一些长宽均为1的突起,需要将他们放如一个高度为3的容器里(如图)求最短的容器长度。

匹配原则是2和2不能配,其他都可以。
使用暴力方法,从长木条左端一个短木条的距离开始,到长木条右端,分别视为原点进行一个短木条的匹配。
一共分三种情况,左边超出,正好,右边超出。l1+l2为最坏情况.
感觉自己特别不严谨,出现了若干bug。

复杂度O((N1+N2)*N2)
如果使用KMP算法,应该可以优化到常数复杂度.

#include <bits/stdc++.h>
using namespace std;
char s1[110], s2[110];
char *p1, *p2;
int l1, l2;
//传入开头差(-l2<=piss<l1,-l2为最坏情况)
//如果可行,返回总长度(至少为l1),不可行返回l1+l2
int check(int piss)
{
    if(piss < 0)
    {
        for(int i = 0; i < l2 + piss; i++)
            if(p1[i] + p2[i - piss] > 3+'0'+'0')
                return l1 + l2;
        return l1 - piss;
    }
    else if(piss > l1 - l2)
    {
        for(int i = 0; i < l1 - piss; i++)
            if(p1[i + piss] + p2[i] > 3+'0'+'0')
                return l1 + l2;
        return piss + l2;
    }
    else
    {
        for(int i = 0; i < l2; i++)
            if(p1[i + piss] + p2[i] > 3+'0'+'0')
                return l1 + l2;
        return l1;
    }
}
int main(void)
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    while(scanf("%s %s", s1, s2) != EOF)
    {
        l1 = strlen(s1), l2 = strlen(s2);
        p1 = s1, p2 = s2;
        if(l1 < l2)
            swap(p1, p2), swap(l1, l2);
        int ans = l1 + l2;
        for(int i = -l2; i < l1; i++)
        {
            //printf("i=%d check=%d\n",i,check(i) );
            ans = min(check(i), ans);
            if(ans==l1)
                break;
        }
        printf("%d\n",ans );
    }
    return 0;
}

12. Uva 11809 - Floating-Point Numbers 数学

介绍了浮点数在内存中的存储形式:(数字符号位,M位尾数,阶码符号位,E位阶码)
可以表示的最大浮点数为0.11111(M+1位2进制)*2^(111111(E位))
即(1-1/2^(M+1))*2^(2^E-1).
输入一个AeB的表示形式,求以A*10^B为最大值的浮点数的M和E.
(必有解,0<=M<=9, 1<=E<=30, 0<A<10)

打表,把300种M,E的组合对应的A,B求出,再由询问搜索即可.
表的数据结构,我用了一个map<pair<double,int>,pair<int,int> >,两个二维数组也是可以的.

一个难点在于,如何将最高2^(2^30-1)的数转化为科学计数法的表示形式:
二期校队选拔赛中做过类似的题,设10^x=2^(2^E-1),则x=(2^E-1)*log10(2),
用fmod函数将x分为整数部分xi和小数部分xf,
则A=(1-1/2^(M+1))*10^xf , B=10^xi
然后对A,B进行调整使A在[1,10)的范围内.

另一个难点是如何读入数据,C语言将AeB本身视为一个浮点数,读入后会变成inf.
我的方法是先读字符串,然后用sscanf_s读到e所在的位置,再分开读.
后来参考了网上的方法,还是先读字符串,然后执行*(strchr(str, ‘e’)) = ’ ‘;
再用sscanf正常读入就可以了.

还有一个坑点是浮点数精度问题,注意浮点数是不能直接比较相等的,所以验证时eps的选取要适中,精度太高会因为计算时的精度误差而WA,精度太低会因为比较错误而WA……经测试1e-4或者1e-5是可以AC的

最后是一个莫名其妙的坑点,坑了我两个小时.我用的
const double lg2=0.301029995663981;始终WA,但是换成log10(2)之后就可以过.
找不到原因,我认为它们是完全相同的如果哪位大佬知道请指点一下.

#include <bits/stdc++.h>
using namespace std;
const double eps = 1e-4;
#define p1 first
#define p2 second
char str[100];
map <pair<double, int>, pair<int, int> >mp;
int main(void)
{
    double a; 
    int b;  
    for(int e = 1; e <= 30; e++)
    {
        double t = ((1 << e) - 1) * log10(2); 
        double prf = fmod(t, 1.0);
        for(int m = 0; m < 10; m++)
        {
            a = ( 1 - 1.0 / (1 << (m + 1)) ) * pow(10, prf);
            b = (int)(t - prf + 0.5);
            while(a < 1)
                a *= 10, b--;
            if(a >= 10)
                a /= 10, b++;
            mp[ {a, b}] = {m, e};
        }
    }
    while(cin >> str, strcmp(str, "0e0"))
    {
        *(strchr(str, 'e')) = ' ';
        sscanf(str, "%lf %d", &a, &b);
        if(a < 1)
            a *= 10, b--;
        for(auto x : mp)
        {
            if(fabs(x.p1.p1 - a) < eps && x.p1.p2 == b)
            {
                printf("%d %d\n", x.p2.p1, x.p2.p2 );
                break;
            }
        }
    }
    return 0;
}

感想

12题写完,第三章就AK啦.
感觉,还是把自己估高了,越到后面的题真的越难做,思维难度和代码细节强度越来越大,stl和各种骚操作百般用尽还差点栽在这些C语言入门的题上.
做以后的例题和习题的时候,要量力而为,除了lrj要求掌握的题之外,其他的题先做够需要的数目,打完一周目再回来尝试AK,加油!

第三章AK图

©️2020 CSDN 皮肤主题: 技术工厂 设计师:CSDN官方博客 返回首页